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A circulatory flow called a ‘backwash vortex ’ forms under waves running up a sloping 
bed. The backwash vortex is classified into two types : the ‘ steady backwash vortex ’ 
and the ‘unsteady backwash vortex’. The former is a steady streaming formed when 
Re, < 90, and the latter an unsteady separated flow formed when Re, > 90, where 
Re, is a form of Reynolds number. The ratio of the lengthscale of the backwash vortex 
to the swash length is proportional to  Re,: when Re, < 30, and becomes constant when 
Re, is sufficiently large. 

1. Introduction 
It is often observed that beach steps form a t  the boundary between surf and swash 

zones on the beaches, and sand ripples form on the bottom floor in shallow water under 
the surf zone. The authors (Matsunaga & Honji 1980a) have shown by laboratory 
experiments that  the ‘backwash vortex ’, which is an unsteady, separated vortical 
flow, forms at the edge of the swash zone when backwash turns back into an oncoming 
wave bore. The backwash vortex erodes a movable sand bed and forms a step along 
the shoreline. This ‘backwash step’ induces the formation of sand ripples in the 
offshore direction. 

This paper is concerned with the results of an experimental study on the 
characteristics of the backwash vortex. 

2. Experimental methods 
Experiments were carried out by using a water tank as illustrated in figure 1. The 

tank, made of transparent plastic plates, was 180 em long, 15 cm wide and 20 cm 
deep. The tank was equipped with a sloping flat bed. The slopes 8 of the bed from 
the horizontal were 8 O ,  12’ and 32O, with flat plates of length 150, 100 and 50 cm re- 
spectively. Wave bores climbing up the sloping bed were formed by oscillating a 
flap-type wave generator with a motor-crank system, The bore did not break. The 
stroke of the wave generator a t  a still water-surface level and the angular frequency 
w of run-up movement, which was the same as that of the wave generator, ranged 
from 3 to  8 cm and from 2.0 to 9.4 s-l respectively. Glycerol-water solutions, of which 
the kinematic viscosity I’ ranged from 0.1 to 4.7 em2 s-l, were used as working fluids. 
The measurements of the characteristic length a of induced vortical flows and the 
swash length I were performed visually during the experiments. The value of a 
Reynolds number Re, defined as w P / v  was varied between 1.4 x 10 and 4.5 x lo4. 
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FIG~JRE 1 .  Schematic diagram of experimental set-up (dimensions in cm): (a) motor; (b) wave 
generator; (c) tank: (d )  glycerol-water solution; (e) sloping bed. 

The direct, shadow method (Hagerty & Mich 1950; Kaneko & Honji 1979; 
Matsunaga & Honji 1980b) was employed to visualize the induced vortical flow 
patterns. The test section of the tank was illuminated by a nearly parallel beam of 
intense light, through a sidewall of the tank. Two-dimensional flow patterns formed 
on a white screen put on the back of the other sidewall of the tank were photographed 
by a 35 mm camera. 

3. Results and discussion 
3.1. Visualized $ow patterns 

Figures 2 (a-;f) show the timewise variation of a flow induced by the oscillatory wave 
motion, T being the time passed from the start of the oscillation. The fluid is at 
rest in figure 2(u) .  Figures 2(bd, and f )  show flow patterns photographed when 
backwash has turned back into an oncoming wave bore. Figure 2 ( e )  shows a flow 
formed when a wave bore has climbed up along the bed surface. A circulatory flow 
rotating anticalockwise forms in the cusped region between the sloping bed and the 
free surface of fluid as shown in figure 2 ( b ) .  Figure 2 ( c )  shows that another circulatory 
flow rotating clockwise begins to form on the offshore side of the anticlockwise flow. 
This clockwise flow is considered to be induced by the anticlockwise flow The 
circulatory flows shown in figures 2 (d-e) are secondary steady streamings, the flow 
velocity of which is much smaller than the maximum velocity of the orbital fluid 
motion due to waves. Since the circulatory flow on the offshore side has the same 
direction as the backwash vortex due to flow separation as shown by Matsunaga & 
Honji (1980a), it may be called a 'steady backwash vortex'. The backwash vortex 
due to flow separation may be called more restrictively an ' unsteady backwash 
vortex' because the vortex formation by flow separation is time-dependent. I n  this 
paper attention is focused on these two types of backwash vortices rather than the 
anticlockwise flow formed in the cusped region. 

The parameters a and 1 and the two-dimensional polar coordinates ( r ,  $) are defined 
as in figure 3, where the steady streamings shown in figure 2 are also illustrated; 1 
is the distance between the uppermost point of wave run-up and the lowermost point 
of wave backwash on the sloping floor. The intersection of the sloping bed and the 
free surface at rest is chosen as the origin 0. The characteristic length a is measured 
in the r direction from 0 to the centre of the backwash vortex when a backwash has 
rushed into an owoming wave. The quantities 1 and l/w are used as the characteristic 
lengthscale and timescale respectively of the oncoming waves. The scale a may be 

(1) 
expressed as 

a = f(l, 0,  v ,  O ) ,  
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( C )  

FIGURE 2(u--c). For caption see p. 192. 
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W) 
FIQURE 2. Development of the standing backwash vortex. Arrow indicates the free surface. Scale 
unit is cm. I = 4.5 cm, w = 4.22 s-l ,  v = 3.07 cm2 s-l, 0 = 1 2 O ,  Re, = 27.8. (a) T = 0; ( h )  0.5 min; 
( c )  2 min, (d )  6 min; (e) 7 min; (f) 9 min. 
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FIQVRE 3. Definition of coordinate systems and characteristic quantities on the backwash vortex. 
Solid line and broken line indicate water surface profiles forming respectively when a backwash 
has rushed into an oncoming bore and when a bore has climbed along the sloping bed. 

and a non-dimensional form of ( 1 )  is given by 

al l  = g(Re,, 01, ( 2 )  
where f and g are functions. 

The relationships between all  and Re,, and between all  and i3 will be discussed 
later based on the measured data and flow patterns photographed when the backwash 
has rushed into an oncoming wave. Figures 4 (a-c) show flow patterns of the backwash 
vortex when Re, = 1.0 x lo2, 1.0 x lo3 and 3.4 x lo3 respectively, at 8 = 12'. The 
values of al l  decrease as Re, increases. While the flows shown in figures 4(a, b)  are 
steady backwash vortices, the flow shown in figure 4 ( c )  is an unsteady backwash 
vortex because its formation was observed only when a backwash had rushed into 
an oncoming wave. As will be seen from figure 4, the lengthscale of the anticlockwise- 
flow region decreases as Re, increases. When the unsteady backwash vortex begins 
to form, the region almost disappears. Through many observations a t  8 = 12' by 
means of the direct shadow method and sawdust method (Matsunaga & Honji 1980a), 
it has been found that the steady backwash vortex changes gradually into the 
unsteady one with increase of Re,, and the critical value of the transition is about 
Re, = 2.0 x lo3. Figure 5 ( a )  shows a steady backwash vortex when 8 = 12' and 
Re = 510 and figure 5(b )  when 8 = 8' and Re, = 540. The values of al l  increase with 
decrease of 8, though Re, are slightly different. 

In figure 6 the data for al l  at 8 = So, 12' and 32' are plotted against Re,. The 
values of all  are proportional to  Ref? when Re, is small, and become constant for large 
values of Re,. 

3.2. Relationship between al l  and Reynolds number 

The dependence of al l  on Re, may be interpreted as follows. The vortical motion on 
the sloping bed is described by the vorticity equation for viscous incompressible fluid : 

curl (u x 0) = vV20, (3) 
a 0  
at 
-- 

where u is a velocity vector and a = curlu a vorticity vector. For small Reynolds 
numbers, and possibly also for the lowest Reynolds numbers in the experiments, the 
motion is dominated by the time-dependent and viscous terms. With slat - l / w  and 
V2 N l/a2, this gives the estimate 

a - (ij/w)+. (4) 
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(C ) 

FIGURE 4. Variation of all  against Re, (scale unit in cm). Arrows indicate the free surface. (a )  
1 = 8.5 cm, w = 4.22 s-l, v = 3.00 cm2 s-l, 0 = 12', a = 27.6 cm, all = 3.25, Re, = 1 . 0 ~  lo2; ( b )  
1 = 8.0 cm, w = 4.19 s-l, u = 0.266 cm2 s-l, 0 = 12O, a = 7.7 cm, all  = 0.96, Re, = 1.0 x lo3; (c) 
l=14.9cm,w=3.71s~1,v=0.242cm2s~',0=120,a=11.2cm,a/l=0.75,Re,=3.4~103. 
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( b  ) 
FIGURE 5. Variation of all against 8 (scale unit in cm). Arrow indicates the free surface. (a) 
Z=6.5cm,  w = 4 . 1 9 s - ' ,  v=0.344crn2s-', 8=12', a = 7 . 5 c m ,  a l l =  1.15, Re ,=510;  ( b )  
I = 8.2 cm, w = 3.14 s-l, u = 0.388 cm2 s-l, 0 = 8' , a = 21.0 cm, all  = 2.56, Re, = 540. 

0 
0 

I I I 1 1 1 1 ,  I 1 I I I I I I  I I I 1 I I I I I  I I I I 1  I I i I  

10 102 103  I 04 105 
Re I 

FICURE 6. Re, dependence of al l .  
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FIGURE 7. Re, dependence of all. 

A non-dimensional form of a is given by 

As the unsteadiness of the driving force increases, the value of al l  becomes smaller 
and smaller because of the decrease of the thickness of the oscillatory boundary layer, 
and eventually the steady backwash vortex begins to change into the unsteady one. 
The lengthscale of the unsteady backwash vortex a t  larger values of Re, may be 
determined by the relation 

- - curl (u x a), 

which shows the balance between the time-dependent and convection terms. Using 

(6) 
a 0  
at 

al l  - 1. (7)  
I U I  - 4 

The experimental result shown in figure 6 supports this argument of scaling. 
Another Reynolds number including 8 is introduced to express the data for three 

different values of 8. By using the two-dimensional polar coordinates ( r ,  $), the 
balance between the time-dependent and viscous terms is written as 

(8) 
1 a a 0  1 a 2 0  aa 

- at { r a r (  ar> r ,a$2)  
-- y- +-- . 

The order estimation of this relation gives 

(9) 

where r - a ,  a/& - 1/a and a 2 / a 2 $  - 1/82 have been used. When 8 6 1 ,  (9) becomes 

where Re, = ~ 1 , 8 ~ / ~ .  
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The data for a l l  are plotted against Re ,  in figure 7 ; a / l  for 0 4 1 is proportional 
to Re;& for Re, 4 30 and becomes constant for larger values of Re,. By recalling that 
at 8 = 12' the critical value of Re,  for steady to unsteady vortex transition is 
2.0 x lo3, the critical value of Re, becomes about 90. An empirical formula for a curve 
on which the data collapse is obtained by assuming al l  = A +  B Re;; and applying 
the least-square fit method to determine the constants A and B. The result is 

a l l  = 0.321 +5.55 Re$, (11) 

which is drawn in figure 7 as a solid curve. 
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